Addition

Early Years Foundation Stage

Key Vocabulary: add, more, and, make, sum, total, altogether, is the same as, one more two more, how many more to make...?

Learning
 Intentions

Counting on in ones from different starting points

Uses the language of 'more' to compare two sets of objects

Finds the total number of items in two groups by counting all of them

Says the number that is one more than a given number

Finds one more or one less from a group of up to five objects, then ten objects
add two single-digit numbers and count on or back to find the answer

Concrete	Pictorial	Abstract

Children are encouraged to develop a mental picture of the number system in their heads to use for calculation.
Children count forward from different starting points.
Children are given opportunities to use counting on during play situations (e.g. How many teddies have come to the picnic?)
Children learn songs and rhymes involving counting
Children will be encouraged to mark make to represent their thinking.

A range of resources e.g. dominoes and dice are used to build up a visual representation of numbers.

Recognise numbers 0 to 10

```
                012345678910
```


1, 2, 3, 4, 5, 6 there are teddies

Count reliably up to 10 everyday objects

Year One

Key Vocabulary: add, more, plus, make, sum, total, altogether, is the same as, equals, balances, sign, one more, two more, ten more, how many more is...? How many more is... than...?

Learning Intentions	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part part whole (PPW) model	Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	$4+3=7$ 4 is a part, 3 is a part and the whole is seven.
Counting on from the biggest number	Using number lines, cubes or Numicon	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4? What is the sum of 2 and 4 ? What is the total of 4 and 2 or $4+2$?
Regrouping to make 10	Using ten frames and counters/cubes or using Numicon. $6+5$	Children to draw the ten frame and counters/cubes.	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now? Children to develop an understanding of

Year Two

Key Vocabulary: add, addition, more, plus, make, sum, total, altogether, is the same as, equals, balances, sign, one more, two more, ten more, how many more is...? How many more is... than...?

Learning Intentions	Concrete	Pictorial	Abstract				
Adding multiples of 10 Using known facts	$\begin{aligned} & \square_{\square} \square+\square_{\square} \square=\square_{\square \square \square^{\square}} \\ & \square \square \square+\square \square \square \end{aligned}$	$\begin{aligned} & x x x x+x x=6 \\ & \\|\\|\\|+\\|=60 \end{aligned}$ 4 tens +2 tens $=$ \qquad tens $40+20=$	I know that $3+4=7$ $\begin{aligned} & 30+40=70 \\ & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$				
To add 2-digit to 1 -digit 2-digit to ten 2-digit to 2-digit (bridging and not bridging)	Make the biggest number on the place value mat. Then make the next number. Then add the ones	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	Children add by partitioning $37+46=$				

Subtraction

Early Years Foundation Stage

Key Vocabulary: take (away), leave, how many are left/left over? How many are gone? One less, two less, difference between, how many have gone?

Learning
 Intentions

Counting backwards from different starting points

Uses the language of 'fewer' to compare two sets of objects
Finds one less from a
group of up to five objects, then ten objects

In practical activities and discussion, beginning to use the vocabulary involved in subtracting

Say which number is one less than a given number

Using quantities and objects, they subtract two single-digit numbers and count back to find the answer

Children are given opportunities to practise counting backwards in a variety of contexts e.g. by jumping on an outdoor number line, learning songs and rhymes.

Children are introduced to the concept of difference through play. E.g. Who has the most? How many more do you have?

Year One

Key Vocabulary: subtract, take (away), minus, leave, how many are left/left over? How many are gone? One less, two less, ten less, how many fewer is..than...? How much less is..? difference between, is the same as, equals, balance, sign

Learning Intentions	Concrete	Pictorial	Abstract
Taking away ones *Must ensure that children are ready to use the - sign	Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).	Cross out drawn objects to show what has been taken away. $15-3=12$	$7-4=3$ $16-9=7$
Counting back	Moves objects away from group counting back Move the beads back along the beadstring as you count backwards	Count back in ones using the number line	Put 13 in your head, count back 4. What number are you at?

Finding the difference

Year Two

Key Vocabulary: subtract, take (away), minus, leave, how many are left/left over? How many are gone? One less, two less, ten less, how many fewer is...than...? How much less is..? difference between, is the same as, equals, balance, sign

Learning Intentions	Concrete	Pictorial	Abstract
To subtract without bridging ten (no regroupng)	$57-24=$ Children to use the Dienes to make the biggest number. Then physically remove. Always taking away the ones first. Then minus the tens. Then	$\|\mid 1 \text { x* } x \times \times \times x$	$\begin{aligned} & 57-24=33 \\ & 7-4=3 \\ & 50-20=30 \\ & 30+3=33 \end{aligned}$

Multiplication

Early Years Foundation Stage

Key Vocabulary: odd, even, groups of, lots of, double, pattern

Year One

Key Vocabulary: odd, even, double, near double, multiple, pattern, times, multiplied, groups of, lots of

Learning Intentions	Concrete	Pictorial	Abstract
Doubling (up to double 10)	Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling	Draw images to double numbers $4+4=8$ $3+3=6$	$\begin{aligned} & 4+4=8 \\ & 5+5=10 \\ & 12=6+6 \\ & 3+?=6 \end{aligned}$
Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$

Year Two

Key Vocabulary: odd, even, double, near double, multiple, pattern, times, multiplied, groups of, lots of

Learning Intentions	Concrete	Pictorial	Abstract
Doubling	Doubling using place value using Dienes	Double $24=48$	Partition a number and then double each part before recombining it back together.
Counting in multiples Of $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$ (forwards and backwards)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models.	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $0,2,4,6,8,10$

	$5+5+5+5+5+5+5+5=40$111 111 111 111 	3 3 3 3	$\begin{aligned} & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$
Multiplication is commutative	Create arrays using counters and cubes and Numicon Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer	Use representations of arrays to show different calculations and explore commutativity. ```x x xx xXX x XX XX 3 < 5 = 15 (35 times)``` $\times \times \times \times x$ $x \times \times \times \times$ $\times \times \times \times \times 5 \times 3=15(53$ times $)$	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Division

Early Years Foundation Stage

Key Vocabulary: half, halves, smallest, less, equal groups, share, equally

Year One

Key Vocabulary: half, halves, smallest, less, equal groups, share, equally, divide, division, group, half

Learning Intentions	Concrete	Pictorial	Abstract
Halving	Children use practical apparatus to share equally	Use a picture to share in two sets equally Half of $6=3$	Half of $4=8$ $1 / 2$ of $4=8$ I know that double 4 balances 8 so half of 8 is 4 .
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Sharing: 4 12 shared between 3 is 4	12 shared between 4 groups is 3 If I share 6 sweets equally between 2 friends, they will have 3 each.

Intentions			
Division as sharing	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Children use bar modelling to show and support understanding. $12 \div 4=3$	Use inverse I know that $3 \times 4=12$ so $12 \div 3=4$
Division as grouping	I have 20 pencils. 5 go in each pot. How many pots will I need?	$\begin{aligned} & 1 \times \times \times \times 8 \\ & 2 \times x \times \times 80 \\ & 3 \times x \times x \times 8 \\ & 4 \times x \times x \times \end{aligned}$ (5) (10) (15) (20)	Use inverse I know that $5 \times 4=20$ so there will be 4 pots.

